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Restoration of Continuously  Sampled  Band-Limited 
Signals from Aliased Data 

Abstract-A continuously  sampled signal is obtained  by  periodically 
placing a signal to zero. A straightforward  closed  form method is 
presented for  restoration of continuously  sampled  bandlimited signals- 
even when the data is aliased. The sampled signal is simply  multiplied 
by a periodic  function specified by the duty  cycle of the degradation 
and the severity of aliasing  This  product is then  placed  through  a 
fdter with bandwidth  equal to that of the signal. The  fiiter  acts ai  an 
interpolator  and the orjginal sjsnal is restored. 

T 
INTRODUCTION 

HE restoration  problem  under  consideration is as follows: 
A bandlimited sign&  is periodically set to zero. Given 

the signal‘s bandwidth, ‘we  wish to reconstruct  the original 

signal  even .when  the  data are  aliased. Such analysis, for  exam- 
ple, is useful for  the restoration  of spatially multiplexed images 
stored on a  continuous  medium. 

On the surface we  are  seemingly confronted  with  a  paradox. 
On one  hand, aliased data are commonly  assumed to be de- 
graded  beyond  recovery. On the  other  hand, knowledge  of a 
band-limited signal over any arbitrarily small interval is suf- 
ficient to specify the signal everywhere. This follows  from 
well known  analyticity  arguments [l] - [ 3 ] .  We will’demon- 
strate  that  the  former  assumption is incorrect for the problem 
at  hand.  Indeed,  a  number  of well known  techniques  can be 
applied to this problem. 

One technique involves taking a sample  of the sampled 

Manuscript received January 29, 1982; revised  April 28,  1982. signal and  its- First M-1 derivatives in each  known inteival. 
The is with  the  Department of Electrical Engineering, uni- If T is the sample  period,  then  the image  can be  recovered in 

versity of Washington, Seattle, WA 98195. M/T exceeds or equals the Nyquist rate [3] - [ 5 ] .  
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A second  solution involves application  of  a sampling theo- 
rem  using interlaced samples [3] , [5] - [ 6 ]  or, more generally, 
from irregularly spaced  sample  points [3], [5] - [lo] . As long 
as there exists at least one  sample  per  Nyquist interval, the 
signal  can  be recovered. Clearly, we simply  need to sample 
the object at  a sufficiently dense rate over those intervals 
where the signal  is known. 

The above restoration schemes require discrete sampling of 
the  degraded signal. Known  data are not used.  One  analog 
restoration technique requires cumbersome  evaluation  of an 
integral equation directly analogous to Slepian  and Pollak’s 
classical  analysis [l] - [3]. An  alternate  analog  technique 
is a straightforward  modification of  Gerchberg’s iterative 
algorithm [3] , [ 1 11 -[ 151 which can  be  placed in closed form 

Continuously sampled  signals  can  also  be restored to an 
approximation  by using linear or  logarithmic filtering [19] . 
Indeed, if the sampling rate is sufficiently fast, the  data can 
be unaliased  and  exact  deterministic  interpolation is  possible 
in  the spirit of the conventional  sampling  theorem [5]. Rader 
[20] has presented  a  restoration  technique for undersampled 
periodic  functions. 

In this paper, we present  an  algorithm for restoring continu- 
ously  sampled  band-limited signals from aliased data. The 
continuously  sampled. signal  is multiplied  by  a  periodic  func- 
tion specified,’by the severity of aliasing and the periodic 
degradation’s duty cycle. This  product is  low  pass filtered. 
The result in the  absence of  noise  is the original  signal. 

[15]-[18]. 

PRELIMINARIES 
Consider a finite energy band-limited signal f(x) with  band- 

width 2W. That is 

f(x> = C F<u> exp ( j 2 m x )  du 

where 
m 

F(u) = f(x) exp  (-j2mx) dx. 1- 
Define the periodic pulse train  with unit period  by 

ra(x) = 2 rect (7) x - n  
n=-m 

where 

and 
f f<l  

is the pulse  train’s duty cycle. The  continuously  sampled 
band-limited image is defined by 

&) = f(x) r a w )  (2) 
where T is the pulse  train’s period. The  interpolatory restora- 
tion problem is to determine f(x) from  knowledge  of g(x), 
ra(x/T) and 2W. 

&\xx H Q T  = 

F T - 4  

-W W 

Fig. 1. Illustration of the degradation  of f ( x )  to g(x) (a) in x; (b) in 
the  frequency domain. 

The  degradation process described  by (2) is illustrated by 
the  top three  functions in Fig. 1. The  corresponding  opera- 
tion in the  frequency  domain, shown in the  bottom  three 
functions  in Fig. 1, is 

G(u) = F(u) * TR,(Tu) (3) 

where  the  upper case letters  denote  the  Fourier  transforms of 
the corresponding  functions in (2) and the asterisk denotes 
convolution.  Expanding (1) in a  Fourier series followed  by 
transformation gives 

where 

en = CY sinc ou? = c-, 

and sinc = sin (r<)/(r$). Thus (3) can  be written as 

Clearly, if the sampling rate 1/T exceeds 2W, the replicated 
spectra do not overlap and F(u) can  be  regained from G(u) 
by  a simple low pass filter [5]. We are interested in the 
aliased case. If one  spectra overlaps the right half zero-order 
spectra as in Fig.  2(a),  we  have first order aliasing. If two over- 
lap, as in Fig. 2(b), we  have second  order aliasing, etc.  In 
general, the.order  of aliasing  is 

M = (2WT) 

where OC ) denotes “the greatest integer less than or  equal to x.” 

A  RESTORATION TECHNIQUE FOR FIRST 
ORDER  ALIASING 

The  methodology  for restoration is best  introduced by the 
first order aliasing interpolation  example illustrated in Fig. 3. 
We scale C ( U )  by co and, as shown,  subtract  a scaled shifted 
version of G(u). The scaling  is chosen so that this difference 
will totally  eliminate  the first order  spectra initially causing 
positive frequency aliasing. Thus 

(4) 

If f ( x )  is real, knowledge  of this portion  of  the  spectrum is 
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++ -4 

Fig. 2. Illustration of (a) fist order  aliasing; (b) second order  aliasing. 

co x 
U 

I 

-cl x U 

I I .  

Fig. 3. Removing the first order  spectrum by subtracting two weighted 
and shifted versions of the degraded  spectrum. 

sufficient to restore the signal  since the Fourier  transform  of  a 
real function is Hermitian: 

F(u) = F*(-u). 

We can then  show 

f(x) = 2 Re F(u) exp ( j 2 m x )  du IW 
where  Re  denotes  "the real part of." Substituting (4) and 
"simplifying"  gives 

* [ W sinc (Wx) exp (jn Wx)] 

Note  thatg(x) is multiplied  by  a  periodic  function  and filtered. 
The  corresponding  restoration  algorithm  pictured in  Fig. 4 
follows as 

r t  r 

t [{ g(x) [ co sin nWx - 
c; - c1c-1 

- c 1  sin n W -  - x * W sinc Wx sin nWx. ( 3 I1 I 

939 

co cos7rWx - c, C O S T  I W -  $,. cos 7r w x  

I I 
c,, s l n 7 r W x - c , s i n I r  ( w - + I ~  sm TI wx 

Fig. 4. Restoration of Fist order  aliased data from the  shift  method 
illustrated in Fig. 3 using  Hermitian symmetry.  The  filters are unity 
for 1u I < W / 2  and zero elsewhere. 

A GENERAL  INTERPOLATION  TECHNIQUE 
For  Mth order aliasing, there are 2M unwanted  spectra 

interfering with  the desired zero  order  spectrum. In this sec- 
tion, we demonstrate  a general method  for  eliminating  the 
unwanted  spectra  by  application of the  technique  presented 
in the previous section. 

Consider Fig. 5 in which 2M + 1 shifted versions of G(u) 
are shown, i.e., 

{ G ( u - m / T ) l M = - M , - M +  l , . . * ,M} .  

The interfering component  spectra in each shifted G are 
shown not overlapping for  presentation clarity. We now  sim- 
ply need to weight the  mth shifted G by  a coefficient b ,  so 
that 

'f b,G (u - :) rect (&) = F(u). 
m =-M 

(5) 
With attention again to Fig. 5, this is equivalent to  summing 
the weights of the  component  spectra in each  column to give 
zero  for  the interferring spectra  and unity  for  the zero  order 
spectra. That is, find  the b ,  's which satisfy 

where 6, denotes  the  Kronecker  delta. Viewing this as a 
matrix  operation: 

it is clear the b,  's can  be  solved for  by  solution  of  a  Toeplitz 
set  of  equations [21] , 

Inverse transforming (5) gives the spatial domain  restoration 
formula 

t 

f(x) = [g(x) BM(x/T)] * 2W sinc 2Wx (8) 

where B,(x) is the trigonometric  polynomial 
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I G [ut  M/T] 

... ... '2M 
U 

co I G[u+ (M-IVT] 
C 2 M + l  ... ... U 

! G (u) 

0 

0 I G[u-M/T] i 
I 

+bM x '- 2M '-2M+I ... 

Fig. 5. Illustration of the  methodology of restoring Mth  order aliased 
data  by summing 2M + 1 shifted  and weighted  versions of  the  de- 
graded  spectrum. 

M 

rn =-M 
OM(x) = b, exp (-j2mx).  (9) 

Note,  however, that since 

g(x) = g(x) T ( Y ( X / T )  

we only  require  knowledge  of O M  where r, is unity.  Thus we 
define  the  periodic  function 

JIM(X) = OM(X)  T(Y@). (10) 

Expanding in a  Fourier series  gives 
m 

$M(x) = d, exp (j2.rmx). 
n=-m 

The coefficients are 
112 

d, = I,,, JIM@) exp ( - i 2 m )  dx 

a12 
- - I,,, e M w  exp (-PW dx 

M 

m =-M 
= a  b, sinca(n - 1.1) 

where, in thelast  step we  have  used (9). From (6), we conclude 

0. I 0.2 

Fig. 6. Plots of $JM(x) =' $,&X) for (Y = 0.5 and M = 1, 2, 3,4,  and 5. 
The vertical  scale is linear  for I $ M I  d 1 and  logarithmic otherwise. 

Fig. I .  Plots 

X 

I I I 

01 0.2 0.3 0.4 
4 

of $ 2  ( x )  for various a The vertical scale 
j $J 2 j < 1 and is logarithmic  otherwise. 

is linear for 

Note that  the d,'s are also the weights of the  remaining spec- 
tra  after  restoration. Plots of $M(x)  for a = 0.S are shown in 2LTZfEG-zyL. 
Fig. 6. Plots of I)~(X) for various duty cycles are shown in 
Fig. 7. 

In lieu Of (8)' *e restoration pictured in Fig* Fig. 8. Restoration of Mth order aliased  data. The periodic  function, 
now  becomes $JM(x/T) ,  is parameterized by the degradation duty cycle a, degrada- 

tion  period T, and the  order of aliasing M. The filter has bandwidth 

FILTER 

f ( x )  = [g(x) $ J ~ ( x / T ) ]  * 2W sinc 2Wx. (11) 2w. 
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NOTES 
1) Taking the limit at T + 00 holding aT constant gives the 

classic band-limited signal extrapolation  problem [ 13  - [3 ]  . 
This  problem is ill posed [12] , [22]  , [23] . We thus  expect 
greater and greater noise sensitivity as a + 0. 

2 )  If N > M ,  then (IN could be  used  in (8) in lieu of OM 
and $N in lieu  of J/M can be used in (1 1). The  restoration 
algorithm then simply  eliminates  spectra  which do  not require 
elimination.  The  obvious  question  of ‘the existence  of an 
O,(x) or  a $-(x)  for  arbitrary aliasing restoration arises. Con- 
sider, however, the  product  in (10) as N + 00. The  Fourier 
coefficient of Jlm is  given by  the discrete convolution the 
Fourier coefficients of 8, and r, 

d, = 2 bmcn-m.  

From (6), d, = 6,. I t  follows that &.,(x) + 1 and e,(x)+ 
l/r,(x). Thus, in the limit as M +  00, eM(x)  becomes  un- 
bounded over those intervals where Y,(x) is zero. 

3)  The sensitivity and instability noted  in  items ( 1 )  and (2)  
manifest themselves  in the  algorithm  through  a  worsening 
condition of the C matrix  in (7). That is, as 01 + 0 or M + 00, 
the C matrix  becomes  more  and  more ill conditioned [23] . 

4) The  restoration  algorithm in (8) is applicable to any 
periodic  degradation  of f ( x )  (under  one  condition).  Simply 
use the  Fourier coefficients of  the  periodic  degradation as 
the c,’s in (6) to determine  the bm’s. The  condition is that 
the  corresponding  matrix in (7) is not singular. Such is the 
case, for example, in the  Whittaker-Shannon  sampling  theo- 
rem [ 3 ] ,  [24] where the  periodic  degradation is 

2 8 ( t -  pT) .  
p = - m  

The  corresponding Cn’S are all equal. 
5 )  Consider  replacing r,(x/T) by 1 - ra(x/T). The restora- 

tion algorithm then becomes  a possible continuous  solution to 
the classic’ interpolation  problem of  recovering f ( x )  from 
f ( x )  [ 1 - rect {x/( l  - a) T)] . Part of the known  data,  how- 
ever,  is  obviously not used.  Note also here that as T + = with 
( 1  - a) T held  constant, we obtain  the classic interpolation 
problem. 

6) Since c,, = c-, in (7), it follows that b, = b-,. Thus, 
(6) simplifies to 

M 
boc, t b,(c,-, + c n + * ) = 6 , ;  O<n<M. 

m = I  

The  order of-the corresponding  matrix to be inverted  for 
finding  the b, ’s is thus reduced  from 2M t 1 to M t 1 ,  Then, 
from (9) 

M 
(I,(x) =bo + 2 b, cos 27rmx. 

m =I 

Alternately, we could  eliminate  only  those  spectra over- 
lapping  the right half  of  the  zero  order  spectrum  and, as  be- 
fore,  reconstruct  the image from  Hermitian  symmetry.  For 
Mth  order aliasing, M spectra  need to be  eliminated to the 

right of the  zero  order  spectra  and (M/2)  to the  left.  The 
corresponding  matrix is thus  of  order M t M / 2 )  t 1 .  If we 
further  take  advantage of the  fact  that b, = b,, the  matrix 
reduces to order M + 1, identical in dimension to  our previous 
result. 

7) One  of  the referees kindly  pointed  out  a similarity be- 
tween  our  algorithm  and  a  technique for eliminating cross- 
talk over a linear time-invariant  channel [ 2 5 ] .  Quoting  from 
the review: 

“Let p ( t )  denote a single finite-duration  pulse  and  suppose 
that  the channel  response to p ( t )  as input is h(t). It is  assumed 
that h(t)  is known  and essentially t(me limited.  For  any 
choice  of  constants cr ,  Y = 0 + =, m’d prescribed sampling 
interval T > 0, 

. m  

g ( t )  = c,h(t - Y T )  
r=o  

is the  channel  response to the  input 

Over the first interval 0 < t < T, g ( t )  = coh(t);  hence, co is 
uniquely  determined. Over the second interval T < t < 2T, 

g ( t )  - coh(t) = clh(t - T )  

so that c1 is determined, etc.” 
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Fast Algorithms  for Linear  Prediction  and System 
Identification  Filters with Linear Phase 

Abstract-A general  finite impulse response (FIR) filter  can  be  used 
as a  linear  prediction  fiiter, if  given only  an  input  sample  sequence,  or 
as a  system  identification  model,  if given the  input  and  output  sequences 
from  an unknown system. With known correlation,  the  coefficients of 
the FIR fiiter that minimize the mean square  error  in  both  applications 
are  found  by  solution of a  set of normal  equations  with  Toeplitz  struc- 
ture. Using only  data samples, the  coefficients  that  yield  the  least 
squared  error  in  both  applications  are  found  by  solution of a  set  of 
normal  equations  with  near-to-Toeplitz  structure.  Computationally 
efficient  (fast)  algorithms have been  published to solve for the coeffi- 
cients  from  both  types  of  normal  equation  structures, If the FIR filter 
is  constrained to  have a  linear phase, then  the  impulse  response  must  be 
symmetric.  This  then  leads to normsl  equations  with  Toeplitz-plus- 
Hankel or near-to-Toeplitz-plus-Hankel structure.  Fast  algorithms  for 
solving these  normal  equations for the filter  coefficients  are  developed 
in  this  paper.  They  have  computational  complexity  proportional  to 
A@ and  parameter  storage  proportional to M ,  where M is the fiiter 
order. An application of one of these  algorithms for spectral  estima- 
tion  concludes  the paper. 

T 
INTRODUCTION 

HE  finite impulse response (FIR) filter has served as the 
foundation  for linear prediction signal  analysis and  has 

also frequently been used as a system identification  model. 
This paper presents  four fast algorithms  for linear prediction 
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and system identification  when  the FIR filter is  specialized 
to have linear phase. 

When used for linear prediction analysis, the  FIR filter out- 
put represents  an  estimate of  the current  input sample value in 
terms of a linearly weighted sum of past (or future) sample 
values. If  the autocorrelation  function for the  input process 
is known,  the  FIR filter coefficients that will yield the mini- 
mum  mean square linear prediction  error (MMSE) are deter- 
mined by  solving a set of  normal  equations  with  Toeplitz 
structure. A computationally efficient algorithm for solving 
these normal  equations is the Levinson recursion [ 11 , which 
is one  of  the  most well known fast algorithms in  digital  signal 
processing. If  one  only uses  available data samples, the  FIR 
filter coefficients that will yield the least squared linear pre- 
diction  error (LSE)  are determined by solution of a set of 
normal  equations  with  structure that is near-to-Toeplitz  in 
some  sense. A fast algorithm also exists for solving these 
normal equations [2]. 

When  used for a system identification  application, the FIR 
filter output represents an estimate of the  current output 
sample value from an unknown system in terms  of a linearly 
weighted sum of past and/or  future sample values from the 
input to  the unknown system. If the  autocorrelation  function 
of the  input process and  the cross correlation  function be- 
tween  the  input  and output process are known,  the  FIR filter 
coefficients that will  minimize the mean  square error between 
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